Volltext: Zur Kinematik des Listingschen Gesetzes (31)

I 2 
Otto Fischer, 
[12 
Wenn der Körper sich in der Primärstellung befindet, so 
fällt der Längspunkt mit einem ganz bestimmten Punkte P0 der 
Kugelfläche zusammen; dieser soll der „Primärpunkt der Exkur¬ 
sionskugelfläche“ genannt sein. Auf dem kugelförmigen Blickfeld be¬ 
zeichnet man ihn im besonderen als den „Hauptblickpunkt 
Wird nun der Körper aus der Primärstellung um irgend eine 
Achse der in diesem Falle zur Längslinie senkrechten Achsen¬ 
ebene gedreht, so beschreibt dabei der Längspunkt auf der Kugel¬ 
fläche einen durch P0 hindurchgehenden größten Kreis. Da es sich 
um die Drehung um eine feste zur Längslinie senkrechte Achse 
handelt, so wird die Querlinie, welche in der Primärstellung in 
die Richtung der Tan¬ 
gente dieses größten 
Kreises fiel, auch in 
allen anderen Punk¬ 
ten dieses Kreises die 
Tangente an densel¬ 
ben bilden. Der Kreis 
selbst stellt also an 
jedem seiner Punkte 
einen Richtungskreis 
für die betreffende 
Querlinie dar. 
Fig. i veranschau¬ 
licht dieses Verhal¬ 
ten. Die angedeutete 
Kugelfläche soll die 
Exkursionsfläche und der auf der vom Beschauer abgewendeten Seite 
derselben liegende Punkt P0 den Primärpunkt auf derselben dar¬ 
stellen. Durch P0 und seinen Gegenpol H, der hier auf der dem 
Beschauer zugewendeten Seite liegt, und den man insbesondere 
bei den Augenbewegungen als den Occipitalpunkt des Blickfeldes 
bezeichnet, ist ein größter Kreis P0P1P2P3 H gezogen. Dieser stellt 
einen Richtungskreis für die in der Figur von P0 nach links oben 
gezeichnete Querlinie dar, welche dort die Tangente an ihn bilden 
soll. In den Stellungen Pt, P2, P3 wird daher die Querlinie eben¬ 
falls mit der Tangente an diesen größten Kreis zusammenfallen. 
Eine zweite Querlinie, welche in der Primärstellung mit der 
ersten den Winkel t bilden möge (siehe in der Figur die von P0
	        
Waiting...

Nutzerhinweis

Sehr geehrte Benutzerin, sehr geehrter Benutzer,

aufgrund der aktuellen Entwicklungen in der Webtechnologie, die im Goobi viewer verwendet wird, unterstützt die Software den von Ihnen verwendeten Browser nicht mehr.

Bitte benutzen Sie einen der folgenden Browser, um diese Seite korrekt darstellen zu können.

Vielen Dank für Ihr Verständnis.